Greenhouse gas emissions impact assessment of an Urban Mobility Plan

30 May 2023

MobiliseYourCity Mastering Mobility Series

Training Developed By

Donors:

Federal Ministry for Economic Cooperation and Development Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE Liberté Égalité Fratemité

In collaboration with

Learn more about the MobiliseYourCity Partnership and our replicable training offers: <u>www.mobiliseyourcity.net</u>

2 - Innovative mass transit options

Some general notes on this session

Make sure you are muted and your camera is turned off

This session will be recorded. You will not appear in the recording if your camera is kept off

15

Include your questions in the chat, we will pose them in the Q&A at the end of the session

Don't hesitate to share your ideas, comments and questions in the chat!

Learning objectives

- Understand the importance of quantifying greenhouse gas emissions in urban mobility to assess the climate mitigation potential of transport transformation.
- Identify the data needed to calculate GHG emissions from urban mobility and build forward-looking scenarios
- Understand how to use the MobiliseYourCity emissions calculator to harmonise GHG mitigation efforts.

2

Contents

Welcome & Housekeeping

The Urban Mobility Plan – Sousse, Tunisia

The MobiliseYourCity Emissions Calculator

5

Impact of Sousse's Urban Mobility Plan in terms of GHG

Q&A, Feedback and Farewell

Speakers

Julien Allaire Senior Urban Transport NKE EUROMED-TSP

Emilie Ball

Junior Urban Transport NKE EUROMED-TSP

Nicolas Cruz Gonzalez

Sustainable Mobility Expert MobiliseYourCity Secretariat

The MobiliseYourCity Emissions Calculator

GHG emissions as part of MobiliseYourCity Core Indicators

6

Transport-related GHG emissions

Reduction of yearly GHG emissions in a SUMP scenario compared to a BAU scenario

3

Road safety

Traffic fatalities by all transport accidents (road, rail, etc.), per 100.000 inhabitants, per year

5

Modal share of non-motorised transport and public transport

The proportion of trips travelled with nonmotorized modes and public transport as a share of total trips travelled with all modes

Access to public transport

Proportion of the population living within 500 meters of a public transport stop with a minimum average 20-minute service

Air quality

Mean annual urban air pollution of fine particulate matter (in μg PM 2.5) at road-based monitoring stations

Affordability of public transport

Percentage, of disposable household income spent on public transport for users part of the second quintile household group

Indicator 1: Reduction of transport related GHG emissions

Justification MobiliseYourCity contributes to the mitigation of transport-related emissions through planning for better and more sustainable urban mobility. Member cities aim for ambitious GHG reductions by implementing their SUMP and are required to report on projected impact.

United Nations Climate Change

Definition

Reduction of annual GHG emission (in CO₂eq) in a SUMP scenario compared to a business-as-usual scenario

Measuring and reporting format

	Baseline (baseline year)	BAU (target year)	SUM (target year)	SUMP vs BAU
Per capita	kg CO _{2eq}	kg CO _{2eq}	kg CO _{2eq}	%
Total emissions	Mt CO _{2eq}	Mt CO _{2eq}	Mt CO _{2eq}	%

Aggregation at Partnership level: sum of reduction of annual GHG emissions for milestone years 2030 and 2059

Our approach: the GHG modelling methodology

SUMP diagnosis, ex-ante and ex-post impact assessment

1. SUMP Phase 1: Diagnosis

- Important to anticipate setting **BASELINE** for indicators
- Contribution to the diagnosis

2. SUMP Phases 2 and 3: Vision setting and action-plan

- Ex-Ante assessment projection of the future impact
- Comparing scenarios BAU business-as-usual vs SUMP
- Milestones years: 2030 and 2050

3. SUMP Phase 4: Monitoring implementation

- Ex-Post assessment monitoring the effects of the plan as they happen
- Continuous monitoring through mobility observatory

Yearly GHG emissions (kt CO2eq)

Example from a fictional city

The avoid, shift and improve approach (ASI)

The MobiliseYourCity Partnership builds on the expertise from all its partners to develop tools and methodologies that are then tested on the ground and consistently improved based on feedback.

We follow the avoid-shift-and improve approach (ASI), which puts people's need for connection and access at the forefront of sustainable mobility planning.

The territorial approach

Our approach considers all the traffic in the territory, both from residents and from visitors.

Trips which start or continue outside of the city are accounted only for the part within the cities' boundaries.

C4

Klimaschutz-

Planer

Kommunaler Planungsassistent

für Energie und Klimaschutz

HEIDELBERG

itei

INSTITUT FÜR EMERGIE-UND UMWELTFORSCHUNG

Introducing the MobiliseYourCity Emissions Calculator

The MobiliseYourCity Emissions Calculator: a tool to steer and to evaluate your policies

The MobiliseYourCity Emissions Calculator is intended to help local, regional or national authorities in developing countries calculate GHG emission profiles from transport on an annual basis.

It helps to calculate baseline, business-as-usual (BAU) and ex-ante mitigation scenarios to understand the emission reduction potential of a package of urban transport policies or policies at the national level.

About the MobiliseYourCity Emissions Calculator

Objective of the tool

Calculation of road and rail transport GHG emission at the city or country level in MobiliseYourCity geographies

Generation of 3 GHG emissions models for passenger and freight:

- 1. **Inventory** of a current situation
- 2. Business-as-usual (BAU) scenario up to 2050
- 3. GHG emission reduction of a SUMP or NUMP "climate scenario"

Notes

- Once data gathering is completed, about 2 to 3 work days are necessary to generate the 3 GHG emissions models (inventory, BAU and climate scenario)
- The use of a transport planning tool to deliver input data is recommended
- Compatible with the IPCC inventory guidelines
- Available in English, French, Spanish

Data requirements

- Socio-economic factors
- Transport demand
- Fleet energy consumption
- Existing emissions data

Data requirements details are provided in a user manual

Gathering data is the main challenge and takes much longer than using the Calculator!

Category/Parameter	Data required for	Sensitivity	Data source	Scope	Data source
			National level		City level
Socio-economic data					
1) Population - Number of inhabitants	Inventory	/	National authority, Surveys	City data	City authority, Surveys
Population growth rate	BAU, Climate scenario	/	National authority, assumptions	City data	City authority, assumptions
Gross domestic product (GDP) or Gross market product (GMP) for cities	Inventory	/	National authority	(City data)	City Authority if data available
GDP growth rate or Gross market product (GMP) for cities	BAU, Climate scenario	/	National authority, assumptions	(City data)	City authority, assumptions if data available

Transport demand								
3a) Vkt approach								
Total annual vehicle kilometers travelled per vehicle category	Inventory	+++	Transport model, surveys	City data	Transport model, surveys			
Annual Vkt growth rate per vehicle category	BAU, Climate scenario	+++	Transport model, assumptions	City data	Transport model, assumptions			
Average Vkt share by fuel type	Inventory	++	Statistics, Surveys, default values	National data	Statistics, Surveys, default values			
Average Vkt share by fuel type in future years	BAU, Climate scenario	++	Surveys, default values	National data	Surveys, default values			
3b) Fleet approach								
Vehicle stock (total number of vehicles) per vehicle category	Inventory	+++	Statistics, Surveys	City data	Statistics, Surveys			
Average annual mileage per vehicle category	Inventory	+++	Statistics, Surveys, default values	City data	Statistics, Surveys, default values			
Annual Vkt growth rate per vehicle category	BAU, Climate scenario	+++	Surveys, assumptions	City data	Surveys, assumptions			
Average Vkt share by fuel type	Inventory	++	National authority, surveys, default values	National data	City authority, surveys, default values			
Average Vkt share by fuel type in future years	BAU, Climate scenario	++	Literature, assumptions	National data	Literature, assumptions			
Average occupancy/load per vehicle category	Inventory, BAU, Climate scenario	++	National authority, surveys, default values	National (or regional data)	City authority, surveys, default values			
Average trip length per vehicle category	Inventory, BAU, Climate scenario	++	National authority, surveys, default values	National data (or regional data)	National authority, surveys, default values			
					Mobilise			

۲۵۵۶ Mobilise ۲۵۵۶ Your City

Content of the current Emissions Calculator

Emissions Calculator used in 20 cities and 7 countries worldwide ... that we know of

Download the MobiliseYourCity Emissions Calculator Suite on mobiliseyourcity.net

Project funded by the European Union

MobiliseYourCity Mastering Mobility

30th May 2023, 11:00 – 12:30 (CEST)

Greenhouse gas emissions impact assessment of an Urban Mobility Plan

Julien ALLAIRE Senior Urban Transport NKE

Emilie BALL Junior Urban Transport NKE

EuroMed Transport Support Project and context of technical assistance

Introductory and background

- Political framework: support Euro-Mediterranean transport cooperation, through Regional Transport Action Plans (RTAPs)
- Aim of EuroMed Transport Support Project (EuroMed TSP) 2017 2023: increase the sustainability and performance of transport operations in the Mediterranean Region
- Objectives of technical assistance:
 - increased safety in transport operations
 - increased efficiency / lower costs of transport
 - lower environmental impact of transport
 - regional economic integration, economic well-being and job creation
- Partner countries: Algeria, Egypt, Israel, Jordan, Lebanon, Morocco, State of Palestine, and Tunisia.

EuroMed TSP approach & workplan structure

TA objectives & motivation

MobiliseYourCity Mastering Mobility Module – 30 May 2023

Two approaches to reconcile

How can local commitments be linked to national commitments? And with what funding could the Greater Sousse agglomeration contribute to Tunisia's national climate commitments?

TA final workshop

A workshop organized in partnership with the Ministry of Transport and the Municipality of Sousse was held on 25 January 2023 in Sousse to:

- **raise awareness** regarding climate issues related to urban mobility;
- promote the link between public policies and national commitments;
- present the results of the analyses conducted with MobiliseYourCity calculation tool;
- identify GHG emissions reduction perspectives;
- familiarize participants with the use of MobiliseYourCity calculation tool to harmonize GHG mitigation efforts.

Greater Sousse SUMP General context : climate issues and Tunisian NUMP

Climate issues and global CO2 emissions

After a drop in 2020 with the pandemic... global CO2 emissions return to pre-crisis levels

Climate issues: International commitments

The gap between the commitments made and the pathways to limiting global temperature increase to below 2°C is still too wide

Climate issues: Tunisian commitments

MobiliseYourCity Mastering Mobility Module - 30 May 2023

National Urban Mobility Policies in Tunisia

It is estimated that **at least 50% of GHG emissions are generated within urban areas**, through industrial and building activities, but also through urban transport, but <u>no explicit link is made with</u> <u>NDC commitments</u>.

What is the role of Tunisian Cities/Municipalities?

Tunisian NUMP aims to build a vision for sustainable urban mobility through the EASI (Enable-Avoid-Shift-Improve) approach. This vision has been translated into strategic measures to be implemented in the short and medium term and specifically the elaboration and adoption of SUMPs for urban areas with more than 150 000 inhabitants.

These actions should help to reduce GHG emissions in the urban passenger and freight transport sector, promote the development of inclusive, high-quality of life and economically competitive cities, and improve transport networks to reduce the impact of climate change, poverty and social inequalities.

Greater Sousse SUMP Greater Sousse 2030: Metropolis of proximities

MobiliseYourCity Mastering Mobility Module - 30 May 2023

Context and objectives

- **Population:** approx. 585 000 inhabitants, spread over 11 municipalities
- **Population growth:** +2.6% per year (among the highest of the large Tunisian conurbations)
- Main urban transport issues: (i) inefficient urban mobility system with institutional transport under strain;
 (ii) poorly performing radial bus network; (iii) low frequency of service; (iv) very limited intermodality; (v) paratransit in full expansion since the 2000s,...
 - ➔ Transport system does not satisfy the mobility needs of the inhabitants while more than one million daily trips are expected to be made in the area by 2030
- Objectives: define a new trajectory for urban mobility to improve the quality of life of the inhabitants, strengthen tourist attractiveness and ensure the economic prosperity of Greater Sousse.

Mobility schemes in Greater Sousse

SUMP vision: towards a Metropolis of proximities

GHG emissions assessment of Greater Sousse SUMP Assumptions and current GHG emissions

ASIF approach

Source: "MobiliseYourCity Monitoring & Reporting Approach for GHG Emissions", September 2020

TTW and WTW emissions

Tank-to-Wheel

GHG emissions produced during operation

Well-to-Wheel

GHG emissions produced during a fuel's entire lifecycle

Evaluation chosen for the quantification exercise

Calculation methods and approaches

Available studies and data

		Vehicle-kilometer	Fleet	Source
Private car		×	\sim	ATTT data 2021 + GIZ- NUMP study 2020
Two-wheelers		×	\sim	ATTT data 2021 + GIZ- NUMP study 2020
Individual taxi	000	×		TNRP study 2018
Minibus		×		TNRP study 2018
Bus Marti Prince				STS data 2022
Sahel train				SNCFT 2017 in GIZ- NUMP study 2020

Calculation methodology: example of the private car

GHG emissions balance of current situation

Some comparisons

- → 2010: 700kgCO2eq/inhab. (passenger + freight)
- → 2016: 825kgCO2eq/inhab. (passenger + freight)

→ 2015: 335kgCO2/inhab. (passenger)

SOUSSE MUNICIPALITY

GHG emissions assessment of Greater Sousse SUMP Assessment of BAU and SUMP 2030 scenarios

What are the projections for 2030?

A strong demographic growth...

2020: 585 000 inhabitants.

2030 (implementation of the SUMP): 765 000 inhabitants, i.e. an annual increase of 2.7%.

Evolution of the population of Greater Sousse between 2018 and 2030 Source: Report « Elaboration d'une vision globale pour la mobilité durable dans le Grand Sousse », Transitec, August 2021

... and a growing motorisation rate

NB: the fleet in year N correspond to the number of vehicle in circulation after removing end-of-life vehicles (vehicles over 25 years old)

MobiliseYourCity Mastering Mobility Module - 30 May 2023

growth for

GHG emissions balance of BAU scenario

Comparison current situation / BAU 2030

GHG emissions from the transport sector increase by +15% between 2020 and 2030, whereas they should be reduced by -17% by 2030 compared to 2010 in order to meet the commitments of the Tunisian NDC regarding transport *--- threshold to meet the commitments*

Comparison current situation / BAU 2030

With the implementation of the SUMP, what does it look like?

With the implementation of the SUMP, what does it look like?

GHG emissions assessment of Greater Sousse SUMP Conclusion

Towards an implementation of the SUMP

The reduction of GHG emissions can be achieved through:

- The implementation of the SUMP action plan;
- Rapid development of an efficient public transport network;
- Moderation of car traffic flows;
- Promotion of active modes of transport, particularly walking;
- Electrification of the fleet (but with decarbonization of electricity production!)

Assumptions for electrification scenario 2030: 100% electric BRT, 100% electric individual taxi, 10% electric private car

A necessary evolution of mode relevance!

Key learnings

- Sustainable urban mobility is a major political challenge (strong link between urban mobility policies and national NDC commitments)
- The quantification and monitoring of GHG emissions from urban mobility policies is essential in order to assess the impact of their implementation and to benefit from external funding
- Implementation of the Greater Sousse action plan offers excellent opportunities to reduce GHG emissions and meet Tunisia's national commitments
- Assessment methodology has some limitations: perimeter issue (especially for exchange and transit flows), no account taken of tourism-related flows, lack of data on freight transport
- Harmonisation of GHG mitigation efforts is needed to address the methodological gap in the assessment of GHG emissions at local and national levels: MobiliseYourCity calculation tool is a lever to achieve it!
- Importance of setting up a mobility observatory to facilitate: data collection, the inventory process and monitoring of GHG emissions at local and/or national level, the development of a governance structure bringing together all urban mobility stakeholders

Thank you

EuroMed Transport SUPPORT PROJECT

Pas 次 中 Your City

Project funded by the European Union

Mobilise

Questions, Feedback and Farewell?

6

Q&A

Chat

→ Post your questions in the chat and we will include them in the Q&A

Speak

→ Select "Show reactions" in the meeting controls, and then choose "Raise your hand". Everyone in the meeting will see that you've got your hand up.

✓ Learn

Exchange

Connect

Stay tuned with MobiliseYourCity updates

Eager for more? subscribe to the MobiliseYourCity newsletter to stay updated with the latest information on our upcoming Mastering Mobility Sessions!

Register here or scan the QR Code

Missed previous past sessions? The recordings are available on their Knowledge Platform!
Visit Knowledge Platform here or scan the QR Code

French version of this webinar – 13 June

Thank you for your attention

Keep in touch

Subscribe to our newsletter here

Mobiliseyourcity.net

contact@mobiliseyourcity.net

@MobiliseCity

(in)

MobiliseYourCity

