

POST COVID FLEET AUGMENTATION ANALYSIS

PRE LOCKDOWN BUS TRANSPORT IN INDIA

PASSENGER TRANSPORT IN INDIA

Passenger transport in India is enabled by roadways, railways, airways and waterways.

of public transport in India

PASSENGER TRANSPORT DEMAND IN INDIA

However, growth of bus systems is not proportionate to the growth in transport demand.

15% growth in passenger trafficVs7% growth in bus fleet

The demand supply gap has led to operations of overcrowded, uncomfortable and unsafe buses reducing their attractiveness to public and resulting in a **shift towards travel by personal vehicles**

Source: Annual Report 2018-19, Ministry of Road Transport and Highways

LOW SUPPLY OF BUSES

- 87% personal vehicles
- 0.74% buses
- 0.06% public buses

Source: Annual Report 2018-19, Ministry of Road Transport and Highways

UNSAFE OVERCROWDED BUSES

POST LOCKDOWN CHALLENGES

POST-LOCKDOWN CHALLENGES

Image Source: Deccan Herald

POST LOCKDOWN CAPACITY AND MEASURES

WRI INDIA | SUSTAINABLE

FLEET AUGMENTATION DATA ANALYSIS

RIDERSHIP VS OCCUPANCY – EXAMPLE 1

Stop Id	Stop Sequence	Boardings	Alightings	Bus Occupancy
1001	1	20	0	20
1002	2	7	2	25
1003	3	0	5	20
1004	4	5	0	25
1005	5	0	4	21
1006	6	6	2	25
1007	7	2	2	25
1008	8	4	4	25
1009	9	0	8	17
1010	10	6	3	20
1011	11	5	8	17
1012	12	0	17	0
		55	55	

Ridership 55

Max Occupancy 25

RIDERSHIP VS OCCUPANCY – EXAMPLE 2

Stop Id	Stop Sequence	Boardings	Alightings	Bus Occupancy
2001	1	15	0	15
2002	2	7	0	22
2003	3	5	0	27
2004	4	5	0	32
2005	5	0	4	28
2006	6	0	2	26
2007	7	2	2	26
2008	8	4	4	26
2009	9	0	5	21
2010	10	3	3	21
2011	11	1	8	14
2012	12	0	14	0
		42	42	

Max Occupancy 32

TRIPS NEEDED @ 25 POST-LOCKDOWN CAPACITY

Measure	Ridership	Max Occupancy	#Trips Needed Based on Ridership	#Trips Needed Actual
Example 1	55	25	3	1
Example 2	42	32	2	2

Ridership Vs. Occupancy

FLEET AUGMENTATION DATA ANALYSIS

Scenario 1 – Agencies with Basic Data

METHODOLOGY

Estimate load factor per hour **#Trips per hour / Average #Trips per day**

Estimate Pre-Lockdown demand **#Trips * Capacity * Load Factor**

Estimate Post-Lockdown demand Pre-Lockdown Demand * Reduction Factor

Estimate Post-Lockdown Trips Post-Lockdown Demand / Reduced COVID Capacity

METHODOLOGY CONTD.

Estimate Additional Trips Required Post-Lockdown Trips – Pre-Lockdown Trips

Estimate Additional Fleet Required Additional Trips / Avg. #Trips per Bus per Day

BUS SCHEDULES / FREQUENCY

Time of Day

SENSITIVITY ANALYSIS (SUPPLY)

Number of trips required at prelockdown demand and various post-lockdown capacities.

SENSITIVITY ANALYSIS (DEMAND)

Number of trips required at varying post-lockdown demand at 50% prelockdown capacity.

SCENARIO 1 SUMMARY

- Assumes # trips and load factor are proportionate
- Not accurate
- Gives general sense of post-lockdown need
- Various demand and supply sensitivities
- No other optimization analysis can be done
- Leasing / running more than required services or buses results in additional cost to the agency

FLEET AUGMENTATION DATA ANALYSIS

Scenario 2 – Agencies with some Quality Data

METHODOLOGY

Use ETM data to calculate pre-lockdown max occupancy for each trip (max occ)

Calculate Percentage of dysfunctional or Non-ETM buses (non-ETM%)

Stop Id	Stop Sequence	Boardings	Alightings	Bus Occupancy
2001	1	15	0	15
2002	2	7	0	22
2003	3	5	0	27
2004	4	5	0	32
2005	5	0	4	28
2006	6	0	2	26
2007		0		26
2008	IVIa:	Max Occupancy		
2009		27		
2010		52		
2011	11	1	8	14
2012	12	0	14	0
		42	42	

Estimate Post-Lockdown ETM Trips Pre-Lockdown Occupancy (max occ) / Reduced COVID Capacity

Estimate Post-Lockdown non-ETM Trips Post-Lockdown ETM Trips * non-ETM%

METHODOLOGY CONTD.

Estimate Additional Trips Required Post-Lockdown Trips – Pre-Lockdown Trips

Estimate Additional Fleet Required Additional Trips / Avg. #Trips per Bus per Day

RIDERSHIP BASED ON ETM DATA

NETWORK LEVEL GAP IN SUPPLY COMPARED TO PRE COVID DEMAND

GAP IN THE REQUIRED SERVICES FOR HIGH AND LOW DEMAND SERVICING ROUTES

DEPOT LEVEL ASSESSMENT

SENSITIVITY ANALYSIS

@25 Passengers/bus

@30 Passengers/bus

@35 Passengers/bus 28 to 44%

More bus trips

18 to 30%

More bus trips

11 to 21% More bus trips

9 to 10 **Trips/bus/day** 8 to 9 **Trips/bus/day** 8 to 9 **Trips/bus/day**

RIDERSHIP BY ROUTE

OVERSUPPLIED ROUTES

BUS STOPS THAT REQUIRE INTERVENTION

Identifying stops with higher boarding and alighting activity can help focus postlockdown efforts and improve safety of passengers and operators

SCENARIO 2 SUMMARY

- Analysis is based on actual ridership data
- Gives realistic sense of post-lockdown need
- Various demand and supply sensitivities
- Data driven optimization to improve post-lockdown services possible with limitations
- Assumptions are required if agencies do not have 100% ETM data or do not capture pass riders

INVEST IN TECHNOLOGY FOR QUALITY DATA

AUTOMATIC VEHICLE LOCATION SYSTEM

PASSENGER INFORMATION SYSTEM

DRIVER & FUEL MONITORING SYSTEM

PLANNING & SCHEDULING SOFTWARE

TRANSIT SIGNAL PRIORITY

AUTOMATIC FARE COLLECTION SYSTEM

THANK YOU

Ravi.Ponnapureddy@wri.org